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LE’ITER TO THE EDITOR 

Renormalisation group for the transfer matrix 

John L Cardyt and N PargaS 
t Department of Physics, University of Califomia, Santa Barbara, California 93 106, USA 
$ Centro At6mico BarilocheB and Instituto Balseiroll, 8400 Bariloche, Argentina 

Received 6 November 1981 

Abstract. A real space renormalisation group method is developed for the transfer matrix, 
and applied to the anisotropic two-dimensional Ising model as an example. It is possible to 
maintain self-duality and so to obtain the exact critical line. 

The equivalence between classical statistical mechanics systems in (d + 1) dimensions 
and zero-temperature quantum systems in d dimensions (Suzuki 1971) has been widely 
used to study properties of the former. Real space, block-spin, renormalisation group 
(RG) methods have been developed for the quantum Hamiltonian (Drell e# a1 1976, 
1977, Pearson 1976, Cardy 1976, Jullien e# a1 1978, Hirsch and Mazenko 1979). In 
these methods, degrees of freedom are thinned only in the d transverse directions. 
Rescaling in the remaining ‘time’ direction corresponds to a rescaling of the energy 
scale of the Hamiltonian, which appears as a consequence of the calculation. Such 
methods should then be suitable for studying systems exhibiting modulated phases 
(Elliot 1961, Selke and Fisher 1979 and references therein, Ostlund 1981), for which an 
explicit rescaling in the direction of the modulation would be inappropriate. 

However, the equivalence mentioned above is valid only in a highly anisotropic limit 
of the classical system (which corresponds to the time-continuum limit) in which any 
commensurate modulated phases will disappear. It is therefore desirable to develop RG 
methods directly for the transfer matrix without taking the anisotropic limit. In this 
letter we illustrate such a technique applied to the two-dimensional Ising model, 
although extensions to more dimensions or other systems are straightforward. 

The transfer matrix for a nearest-neighbour model in two dimensions can be written 

where is the single site transfer matrix, and Vj;i+l is the Boltzmann weight for a 
horizontal link. The basic idea is to form blocks whose transfer matrices commute, 
diagonalise these blocks exactly, retain only the highest-lying states in each block, and 
re-express the full transfer matrix in the basis of these states. In this truncated basis f 
has the same form as before, with renormalised parameters. In order to build blocks 
some of the matrices in (1) have to be brought together, and at this point their 
non-commutativity must be taken into account. Also, the block transfer matrices may 
not be Hermitian. These two difficulties do not appear in the Hamiltonian limit. 
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As examples we exhibit two approximate RG schemes for the transfer matrix of the 
two-dimensional king model, for which 

1 0  
q = ( 0  &) 

V,,l+i = 1 +Au:c:+i (3) 

where E = tanh J1, A = tanh Jo, with J1 and Jo being the nearest-neighbour couplings in 
the ‘time’ and horizontal directions, respectively. First we consider blocks with 
Tb = TZJV2J,2J+l. This has the advantage of preserving duality. After a similarity 
transformation, the transfer matrix may be written 

14) 

where the blocks on the right will be treated exactly. Tb has two degenerate largest 
eigenvalues 

15) 

? I = .  . . vizV34v56.. . TiT3T5.. . (T2v*3)(T4v45)(T6v67). . . 

p = ${l + E + [( 1 - E)’ i 4 ~ A  2]1’2} 

a’/b’= &a/b  = &A/(p  - 1) .  (8) 

The correct normalisation condition is aut+ bb‘= 1. ?’ is now written in terms of the 
truncated basis formed by (6)  and (7). In this basis the blocks on the right of (4) are 
proportional to the identity matrix, and give an unimportant additive constant in the 
free energy. The remaining factors Tzl+l and Vz1-1,21 have the form of equations (2) 
and (3) respectively, with renormalised parameters 

E ’  = (&ala + b’b)/(a’a + Eb’b) (9) 

A’=A(ab’+a’b) 110) 

and then, after a further similarity transformation, the full transfer matrix may be recast 
in form (1). The flows of (9) and (10) in the ( E ,  A )  plane are shown in figure 1. In the 
paramagnetic phase, the flows terminate on a line of fixed points ( E  # 0, A = 0). The 
final value of E is (within our approximation) just the ratio of the second to the largest 
eigenvalue of ?, so the correlation length is -(ln E ) - ’ .  In the ferromagnetic phase flows 
terminate on the line ( E  = 1, A # 0). The two phases are separated by a critical 
line which, because our procedure preserves duality, is exact. The equation 
sinh 2J1 sinh 2J0 = 1 for the critical line becomes, in our variables, 

E A + E + A = l  (11) 
and this is preserved under the transformations (9) and (10). Points near the critical line 
flow into the region E - 1, A - 0. This is just the anisotropic limit in which the 
equivalence to a quantum model is valid. Defining K = (1 - & ) / A ,  the ratio of (9) and 
(1 0) becomes 

K‘ = + K ~  (12) 
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in this limit. This is the same equation as derived by Fernandez-Pacheco (1979) using a 
similar method in the Hamiltonian limit. Thus we obtain the same values for the critical 
exponents. 

An alternative decomposition of f which we have considered is 

f =. . . V:i’Vi$’. . . (V:~’T*TZV:~~)(V:!~TJT~V:!’). . . Vii’Vi$’. . . (13) 
which is Hermitian. Now Tb = V:~/~~.Z~TZ~-~TZ~V:~/~~,Z~ is treated exactly. The flows are 
qualitatively similar to those of figure 1. The critical fixed point once again occurs in the 
anisotropic limit, and in this limit our equations reproduce those of Drell et a1 (1976). 

Although the values of critical exponents obtained in these simple truncation 
schemes are not reliable, accuracy may be improved, as in the Hamiltonian case, by 
considering either larger blocks (Jullien et a1 1978), or the effect of other eigenstates of 
the block transfer matrix (Hirsch and Mazenko 1979). 

Figure 1. Schematic diagram of the RG flows for the transformations considered. The bold 
curve represents the critical line. Points on this line flow into the critical fixed point E = 1, 
A =o.  
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